GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

(AUTONOMOUS) (Affiliated to Andhra University, Visakhapatnam) I B.Tech. - I Semester Regular Examinations, December / January – 2025 <u>ENGINEERING PHYSICS</u>

SCHEME OF VALUATION

.....

1. a. Explain interference in thin films due to interference of reflected light and obtain the conditions for maxima and minima.

Explanation of reflect ray interference in a parallel thin film	-	02 Marks
Diagram related to the parallel thin film interference	-	01 Mark
> Derivation of path difference, $\delta = 2\mu t \cos r + \frac{\lambda}{2}$	-	03 Marks
 Conditions for Maxima and Minima 	-	02 Marks
For maxima the path difference, $\delta = 2\mu t \cos r = (2n-1)\frac{\lambda}{2}$,	where, n=	= 1, 2, 3
For minima the path difference, $\delta = 2\mu t \cos r = n \lambda$,	where, n=	= 0, 1, 2, 3

1. b. What is Brewster's law? Show that reflected and refracted rays are perpendicular to each other at polarizing angle.

Statement of Brewster's law	-	02 Marks
Diagram related to Brewster's law	-	01 Mark
Derivation to show that reflected and refracted ray are		
perpendicular to each other, i.e., $\mathbf{r} + \mathbf{\theta}_{\mathbf{B}} = 90^{\circ}$	-	03 Marks

2. a. Obtain expression for intensity due to Fraunhofer's diffraction due at a single slit.

 Description of Fraunhoffer diffraction due to a single slit 	-	02 Marks
 Diagram depicting single slit diffraction 	-	01 Mark
Expression for path difference due to a single slit	-	01 Marks
BN =AB sin θ =e sin θ and the phase difference = $\frac{2\pi}{\lambda}$ (e sin θ))	
> Derivation of Resultant amplitude, $R = A\left(\frac{\sin \alpha}{\alpha}\right)$, (where A=na)) -	03 Marks
> The Intensity expression, $I = A^2 \left(\frac{\sin^2 \alpha}{\alpha^2}\right)$	-	01 Mark

2. b. Describe construction and working of Nicol's prism.

\triangleright	Construction of Nicol Prism	-	02 Marks
\triangleright	Diagram of Nicol Prism	-	01 Mark
\triangleright	Working of Nicol Prism	-	03 Marks

3. a. State and explain second law of Thermodynamics.

	Kelvin's Statement	-	02 Marks
	 Explanation of Kelvin's Statement 	-	02 Marks
	Clausius' Statement	-	02 Marks
	 Explanation of Clausius' Statement 	-	02 Marks
3.	b. Explain entropy and disorder.		
	Explanation for Entropy	-	03 Marks
	Explanation of disorder	-	03 Marks
4.	a. State and explain Carnot's Theorem.		
	 Statement of Carnot's theorem 	-	02 Marks
	Proof of Carnot's theorem	-	06 Marks
4.	b. Explain First Law of Thermodynamics		
	Statement of First law of thermodynamics	-	02 Marks
	Explanation of First law of thermodynamics	-	04 Marks

5. a. Obtain the expression for the electric field due to a solid charged sphere using Gauss law.

۶	Diagram of Solid charged sphere	-	01 Mark
۶	Derivation of Electric field at an exterior point	-	02 Marks
\triangleright	Derivation of Electric field on the surface of the solid sphere	-	01 Mark
۶	Derivation of Electric field at an inside point	-	03 Marks

5. b. Derive the expression for the magnetic field due to a current carrying conductor using **Biot-Savart law.**

 Diagram for straight current carrying conductor Derivation of magnetic field for a straight conductor 	-	02 Marks 05 Marks
Explain Faraday's law of electromagnetic induction	-	03 Marks

6.a. Explain Faraday's law of electromagnetic induction

	Faraday's, I law statement and expression	-	3 1/2	Marks
\triangleright	Faraday's II law statement and expression	-	3 ½	Marks

7. a. Describe the construction and working of Ruby Laser.

\triangleright	Construction of Ruby Laser	-	02 Marks
	Diagram of Ruby laser	-	01 Mark
	Working of Ruby laser	-	03 Marks
\triangleright	Energy level diagram	-	02 Marks

7. b. Explain different types of losses in optical Fibers Losses in Optical fibres.

۶	Scattering Losses	-	03 Marks
۶	Macroscopic and Microscopic Bends	-	03 Marks

8. a. Explain the propagation of light through an optical fibre and obtain the expression its numerical aperture.

Explanation of propagation of light through an optical fiber	-	03 Marks
Diagram of Optical fiber with core and cladding	-	01 Marks
 Diagram for derivation of Numerical Aperture 	-	01 Mark
 Derivation for Numerical Aperture 	-	03 Marks
N.A. = $\sin \theta_a = \sqrt{(n_1^2 - n_2^2)}$		

8. b. Distinguish between spontaneous emission and stimulated emissions.

\triangleright	Explanation for Spont	neous Emission	-	03 Marks
------------------	-----------------------	----------------	---	----------

Explanation for Stimulated Emission - 03 Marks

S.no	Stimulated Emission	Spontane
1.	 An atom in the excited state is induced return to the ground state, thereby resulting in two photons of same frequency and energy is called Stimulate emission 	
2.	The emitted photons move in the same direction and is highly directional	The emi directions
3.	The radiation is highly intense, monochromatic and coherent	The radi

9.a. Apply Schrodinger's equation to a particle in a one-dimensional box and obtain the energy values and wave function.

۶	Diagram for Energy of particle in a box	-	01 Marks
۶	Boundary conditions	-	01 Marks
۶	Application of Boundary conditions and Determination of A, B & k	-	02 Marks
	Calculation of Energy	-	02 Marks
۶	Wave function	-	02 Marks

9. b. Distinguish between qubits and classical bits

	Explanation of Classical Bits	-	03 Marks
۶	Explanation of Quantum Bits	-	03 Marks

S.No.	Classical Bits	Quantum Bits
1.	A Bit, also called Binary Digit or Classical Bit, is the smallest unit of information measurement in digital computing technology.	A Quantum Bit, also called Qubit, is the smallest unit of information measurement in quantum computing.
2.	A bit can have only two values, i.e. 0 and 1.	A quantum bit can have multiple values simultaneously.
3.	Classical bit does not follow superposition property.	Quantum bit follows superposition property.
4.	Bits are inherently stable, i.e. they do not change their states in the absence of external force.	Quantum bits are inherently unstable, i.e. they can change their states even no external force exists.
5.	The value or state of a bit can be determined precisely. Hence, they are deterministic.	The value or state of a quantum bit cannot be precisely determined. Hence, they are probabilistic.
6.	Bits are physically implemented through electronic and optical devices.	Quantum bits are implemented by using quantum systems like ions, atoms, superconductors, etc.
7.	Boolean operations are executed on bits.	Quantum operations are executed on quantum bits.
8.	Bits can be copied perfectly.	Quantum bits cannot be copied perfectly.
9.	The operations on bits are performed using digital logic gates, such as AND, OR, NOT, etc.	The operations on quantum bits are performed using quantum logic gates.

10.a. Obtain the expression for the wavelength of matter waves (de-Broglie's relation) and explain physical significance of wave function.

	Statement of De-Broglie Wavelength	-	01 Mark
	Derivation of De-Broglie Wavelength	-	04 Mark
≻	Physical Significance of Wave function	-	03 Marks

10. b. Explain the basic idea of quantum teleportation.

► I	Definition of teleportation	-	02 Marks
-----	-----------------------------	---	----------

Explanation with examples - 04 Marks